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As population structure can result in spurious associations, it
has constrained the use of association studies in human and
plant genetics. Association mapping, however, holds great
promise if true signals of functional association can be
separated from the vast number of false signals generated by
population structure1,2. We have developed a unified mixed-
model approach to account for multiple levels of relatedness
simultaneously as detected by random genetic markers. We
applied this new approach to two samples: a family-based
sample of 14 human families, for quantitative gene expression
dissection, and a sample of 277 diverse maize inbred lines with
complex familial relationships and population structure, for
quantitative trait dissection. Our method demonstrates
improved control of both type I and type II error rates over
other methods. As this new method crosses the boundary
between family-based and structured association samples,
it provides a powerful complement to currently available
methods for association mapping.

Population structure is universal among organisms3,4. It can arise
naturally in the form of herds, colonies, ethnic groups or other types
of aggregations, owing to geography, natural selection or artificial

selection. For association mapping, a given sample may fall into one of
five categories defined by population structure associated with local
adaptation or diversifying selection and familial relatedness from
recent coancestry (Fig. 1). Ideally, samples with minimal population
structure or familial relatedness (area I) result in the greatest statistical
power, provided that the trait of interest is well distributed (Fig. 1).
Such samples, however, often prove very difficult to collect, are small
in size and/or have a narrow genetic basis. Family-based samples (area
II) have been exploited to avoid the effect of population structure5–8,
but these samples are also limited by sample size and allelic diversity
and can be difficult to collect, particularly for late-onset human
diseases (Fig. 1). For quantitative traits, the Quantitative Transmission
Disequilibrium Test (QTDT) is one method widely used for associa-
tion mapping with these family-based samples7. Samples of increased
size as well as broader allelic diversity in a species often contain
population structure (area IV) or include familial relationships within
structured population (area III; Fig. 1). For these samples, Structured
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Figure 1 Different types of samples used for association mapping. Although

all individuals are related via a large genealogical tree, the population

structure axis depicts relationships among major subpopulations associated

with local adaptation or diversifying selection. The familial relatedness axis

depicts the relationships among individuals from recent coancestry. The

dotted lines indicate that clear delineations may not exist between areas.

Methods listed can be applied to different sample types, although they are

designed for specific purposes (for example, SA was designed for samples

with population structure, and TDT and QTDT were designed for family-based
samples). These methods deal with the specific sample structure either

directly (as in SA, QTDT, TDT and the mixed model) or indirectly by

adjusting the test statistics from regression analysis (as in GC).
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Association (SA) and Genomic Control (GC) are common methods
used in human and plant studies to control for the false positives
(type I errors) caused by this population structure9–13. With GC,
random markers are used to estimate and adjust the inflation of
test statistics generated by population structure, assuming such a
structure has a similar effect on all loci. SA analysis uses random
markers to estimate population structure and then incorporates this
into further statistical analysis. For samples in area III, however,
accounting only for population structure may lead to either
inadequate control for false positives or a loss in power owing to
familial relatedness (Fig. 1). It remains to be seen which methods will
prove most useful when evaluating samples with very high levels of
population structure along with diverse levels of familial relatedness
(area V; Fig. 1).

In this paper, we present a new method for association mapping
that is applicable to samples from areas II and III (Fig. 1). For the
family-based sample, we applied our method to microarray data from
the baseline expression levels of genes in immortalized B cells from 14
families of Centre d’Etude du Polymorphisme Humain (CEPH) Utah
pedigree14. In this study, six gene expression phenotypes were regard-
ed as phenotypic traits in mapping expression quantitative trait loci
(eQTL). For the sample containing complex familial relationships and
population structure, we examined three quantitative traits measured
on 277 diverse maize inbred lines, representing the diversity present in
public breeding programs around the world15. As maize is a highly
outbred species, the population differentiation (Fst) among the major
subgroups in our sample ranged from 0.047 (SSR) to 0.073 (SNP),
similar to that of a recent human study11 (Fst ¼ 0.013 for Chinese-
Japanese and Fst ¼ 0.145 for between continents). When we included
a minor bottlenecked subgroup, the overall Fst rose to 0.106 (SSR)
and 0.118 (SNP).

Our association mapping approach integrates genomic tools to
uncover population structure and familial relationships with the

traditional mixed-model framework that has long been used by
animal geneticists16–18. One obvious obstacle in applying a mixed-
model method beyond a few domesticated animal species is that
pedigree records are often unknown or inaccurate. Genomic tools
now allow us to detect both population structure (Q) and relative
kinship (K) within a sample. Marker-based relative kinship
estimates have proven useful for quantitative inheritance studies
in different populations19,20. This K estimate approximates identity
by descent by adjusting the probability of identity by state between
two individuals with the average probability of identity by state
between random individuals. For the CEPH sample, we replaced the
pedigree-based coancestry matrix (G) in a traditional mixed model
with the K matrix to define the degree of genetic covariance
among individuals. No population structure was detected, and Q
was not included in the mixed-model analyses. For the maize sample,
we fit both Q and K into the mixed model to account for multiple
levels of relatedness.

We randomly tested the expression level of six genes with good
heritability estimates: HSD17B12, TUBB2A, CTSH, RPS26, UBE2L3
and SSR1. The K matrix agreed with the family structure of the data.
Although 94% of the pair-wise kinship estimates were close to 0, the
small peaks around 0.25 and 0.125 represented the relationships
within families (Fig. 2a). The mixed model with either the K or G
matrix fits the data equally well. The K model showed a significant
improvement in model fit over the simple model in which family
structure is ignored (Table 1).

Overall, the K model, GC and QTDT showed good control of type I
error rate (Fig. 3a–c and Supplementary Fig. 1 online). The K model
gave slightly liberal results and GC gave slightly conservative results for
TUBB2A, whereas the results from QTDT were liberal for TUBB2A but
slightly conservative for HSD17B12. The statistical power simulation
was conducted by adding a genetic effect to each marker and then
testing whether it could be detected by different models. The adjusted
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Figure 2 Distribution of pairwise relative kinship

estimates in the CEPH sample and maize sample.

The peaks around 0 indicate no relationship.

(a) For the CEPH sample, the small peaks around

0.25 represent relationships among offspring

within a family, parent-offspring or grandparent-

parent, and the small peak around 0.125

represent relationships of grandparent-offspring.

(b) For the maize sample, the continuously

descending estimates of relative kinship agree

with the complex familial relationships and

population structure among these maize inbred

lines. For simplicity, we show only percentages

of the relative kinship estimates of the maize

sample from 0 to 0.45.

Table 1 Goodness of fit of three different models in explaining phenotypic variation of human gene expressions

HDS17B12 TUBB2A CTSH RPS26 UBE2L3 SSR1

–2 log

likelihood BIC

–2 log

likelihood BIC

–2 log

likelihood BIC

–2 log

likelihood BIC

–2 log

likelihood BIC

–2 log

likelihood BIC

Simple model 116.1a 126.6 210.3a 220.8 208.1a 218.6 184.9a 195.4 72.3a 82.8 14.0a 24.6

Coancestry 70.0 85.8 174.9 190.7 137.7 153.5 56.5 72.3 43.6 59.4 –3.2 12.6

K model 67.8 83.6 173.9 189.7 140.7 156.5 58.7 74.5 45.0 60.8 –3.2 12.6

aModel comparison based on w2 test indicates whether the K model significantly improves the model fit at P o 0.001; BIC, Bayesian Information Criterion (smaller is better); all CEPH Utah family
members were used in the analyses of three models; the simple model was included only for the purpose of illustrating the effect of ignoring family relationships, as it is not a standard practice.
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average power was consistently higher for the K model than for
QTDT, GC and the simple model (Fig. 3d–f and Supplementary
Fig. 1). Differences in the adjusted average power between the K
model and QTDT were smaller for HSD17B12, CTSH and RPS26 than
for TUBB2A, UBE2L3 and SSR1. A previous study has shown that the
gene expression levels of HSD17B12, RPS26 and CTSH are regulated
by cis-acting determinants14. The heritability estimates for HSD17B12
(h2 ¼ 0.58), CTSH (0.64) and RPS26 (0.80) gene expression were
higher than those for TUBB2A (0.34), UBE2L3 (0.52) and SSR1 (0.21).

However, because our test of statistical power
assumed complete linkage disequilibrium
(LD) between markers and Quantitative
Trait Nucleotides (QTN), whereas QTDT
was designed to simultaneously test linkage
and association, QTDT may be advantageous
in a situation of low to moderate LD.

For the maize sample, although 80% of the
pairwise kinship estimates were close to 0, the
remaining estimates were distributed from
0.05 to 1.0, as expected from the complex
familial relationships and population struc-
ture (Fig. 2b). The main difference in kinship
estimates between the human and maize
samples is that the maize sample had more
first cousin–level relationships. In most cases,
the Q + K model showed a significant
improvement in goodness of fit compared
with the other models (Table 2).

For all three maize traits, the Q + K model
resulted in the best approximation to the
expected cumulative distribution of P values,
followed by the K model, the Q model and,
lastly, the simple model (Fig. 4a–c). In gen-
eral, GC performed well, except for ear dia-
meter. As expected, correction for deviation
from the uniform distribution of P values by
fitting Q in the model (that is, SA alone) was
greatest for flowering time, followed by ear
height and, finally, ear diameter. Correction
by the K model was always better than the Q
model. We found that 37.6% of the SNPs
were associated with flowering time at P o
0.05 by the simple model, compared with
14.1% by the Q model, 6.1% by the K model
and only 6.0% by the Q + K model. For all

three traits, the models with Q- or K-based control had higher power
than did the simple model and GC (Fig. 4d–f). For flowering time
and ear height, the Q + K model had the highest power. For ear
diameter, the K model yielded a slightly higher power than the Q + K
model did, which agreed with our model fitting results.

As noted above, our new approach uses a relative kinship
matrix estimated from marker data. As such, it is able to overcome
the limitations of previous association studies in plants and many
other organisms, where direct calculation of coancestry coeffici-

ents proved impractical owing to incomplete
pedigree records or inaccurate owing to
biases resulting from inbreeding, selection
and drift. These biases can be especially strong
in plant and animal breeding programs.
Although the K model provided similar
results as the G model in the CEPH sample,
it would likely outperform the latter when
errors in pedigree records, self-reported
ancestry or segregation distortions exist.

A second benefit of our approach is that the
Q + K model is able to systematically account
for multiple levels of relatedness among indi-
viduals. Essentially, the genetic consequence
of local adaptation or diversifying selection
among the different maize populations—
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Figure 3 Model comparison with human gene expression phenotypes. (a–c) Evaluation of the model

type I error rates using random SNPs for gene expression phenotypes for HSD17B12 (a), TUBB2A (b)

and CTSH (c). The cumulative distributions of observed P values are presented for the simple model,
the K model, QTDT and the simple model with genomic control (GC). Under the expectation that

random SNPs are unlinked to the polymorphisms controlling these traits (H0: no SNP effect),

approaches that appropriately control for type I errors should show a uniform distribution of P values

(a diagonal line in these cumulative plots). The simple model was included only for the purpose of

illustrating the effect of ignoring family relationships, as it is not a standard practice. (d–f) The

adjusted average power of the models for HSD17B12 (d), TUBB2A (e) and CTSH (f). A genetic effect

was added to each random SNP (QTN effect), where k ¼ 0.1, 0.2, 0.5, 0.7, 0.9 and 1.0 times the

standard deviation of the phenotypic mean of a trait. Each model was adjusted based on its empirical

type I error rate. The adjusted average power for GC is the same as that of the simple model with the

empirical threshold P value. For convenience of comparison, we list the point value of phenotypic

variation explained by a QTN at the allele frequency of p ¼ 0.3.

Table 2 Goodness of fit of four different models in explaining phenotypic variation of maize

quantitative traits

Flowering time Ear height Ear diameter

–2 log

likelihood BIC

–2 log

likelihood BIC

–2 log

likelihood BIC

Simple model 1,655.6a 1,666.7 2,332.3a 2,343.4 1,306.0a 1,316.9

Q model 1,546.1a 1,568.4 2,286.9a 2,309.2 1,300.1a 1,321.9

K model 1,545.9a 1,562.6 2,270.6a 2,287.3 1,272.8 (NS) 1,289.2

Q + K model 1,516.7 1,544.6 2,256.6 2,284.5 1,272.5 1,299.8

aModel comparison based on w2 test indicates whether the Q + K model significantly improves the model fit at P o 0.001;

NS, not significant; BIC, Bayesian Information Criterion (smaller is better); the simple model was included only
for the purpose of illustrating the effect of ignoring population structure and family relationships, as it is not a
standard practice.
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arguably the product of allelic differences at a few genes with relatively
large phenotypic effects—was accounted for by Q in a gross manner,
whereas relatedness among individuals within and between groups
was accounted for by K on a finer scale. Thus, the two approaches for
uncovering population structure are complementary. Unlike GC,
which uses constant inflation factors for test statistics, the mixed
model directly adjusts each test statistic internally by accounting
for multiple levels of relatedness17. Consequently, our approach
simultaneously improves the detection of QTN and the estimation
of their effects and results in improved control for both type I and
type II error rates.

The mixed-model approach has the added advantage of being
flexible, as it can be applied to both family-based and population-
based samples21. For samples such as CEPH without population
structure, dropping Q reduces the model to a single population-
based association analysis with polygene control. If, however, random
mating within each subpopulation can be safely assumed or deter-
mined through the model fitting, dropping K reduces the model to a
regression-based structured association analysis. The fixed SNP effect
can be replaced with either a fixed or a random haplotype effect18,22.
The robustness of our new method in withstanding inaccurate or
insufficiently determined population structure and relative kinship
estimates would be population dependent or sample dependent and
requires further investigation. As in other mixed-model and variance
components applications, small sample size may hinder an accurate

and meaningful estimate of the polygenic
component16,17. This, however, should not
be problematic for association studies similar
to the examples outlined here, in which
marker number and sample size are large
enough to obtain accurate estimates of both
Q and K and the polygene component.
Building on previous research in human5–10,
animal16–18 and plant13 systems, our new
method initiates a systematic approach to
future applications of association mapping
for samples with multiple levels of relatedness
in many species.

METHODS
CEPH sample. The CEPH sample comprised

members of 14 CEPH Utah families (CEPH 1333,

1340, 1341, 1345, 1346, 1347, 1362, 1408, 1416,

1418, 1421, 1423, 1424 and 1454)14. A total of

1,384 autosomal SNP markers with a minimum

frequency of 0.1 in 194 individuals, whose lympho-

blastoid cells were phenotyped for gene expression,

were used in the current analysis. Gene expression

data was log2 transformed. Details of the genotyp-

ing and phenotyping procedure can be found at the

SNP Consortium Linkage Map Project database.

Maize sample. We recently assembled a maize

association panel with 277 inbred lines15. These

lines generally belong to one of four groups recog-

nized by plant breeders: stiff stalk, non–stiff stalk,

tropical/subtropical and mixed. Field tests were

conducted in Clayton, North Carolina, USA

(summer nursery) and Homestead, Florida, USA

(winter nursery) in 2002, and the trait mean of the

two field tests was used in the current study. Three

traits on which population structure has different

levels of effect were selected from among the 60

traits measured: (i) flowering time, which is strongly correlated to population

structure (R2 ¼ 0.35), (ii) ear height, which is moderately correlated to

population structure (R2 ¼ 0.16) and (iii) ear diameter, which has no

correlation to population structure (R2 ¼ 0.02)15. Flowering time was mea-

sured as the number of days to pollen shed, ear height as the distance from the

ground to the major ear-bearing node and ear diameter as the diameter of an

ear at the midsection.

SNP discovery was performed using a diverse set of 14 maize inbreds and

16 teosinte (Zea mays ssp. parviglumis) inbreds23. We used 553 SNPs with

a minimum frequency of 0.1 in the 277 maize inbreds for the current

analysis. They were designed from 413 randomly selected genes out of the

B10,000 maize ESTs in the MMP-DuPont set24. SNP assay development and

scoring was performed by Genaissance Pharmaceuticals using the Sequenom

MassARRAY System25. Replicated assays indicate that the genotyping error

rate is B0.3%.

Candidate QTN simulation. The genetic effect (a) of a simulated candidate

QTN was assigned as k ¼ 0.1, 0.2, 0.5, 0.7, 0.9 and 1.0 times the standard

deviation of the phenotypic mean. The percentage (p) of the total phenotypic

variation explained by this genetic effect can be estimated as

p ¼ pð1 � pÞk2=ðpð1 � pÞk2 + 1 � 1=nÞ � 1=ð1 + 1=ðpð1 � pÞk2Þ ð1Þ

where n is the sample size, and p is the sample frequency of the polymorphism

at the QTN26. At 0.5 times the standard deviation, this genetic effect explains

2–6% of the phenotypic variation, depending on p at the QTN. For conve-

nience of comparison, we listed the percentage of phenotypic variation

explained by a QTN at the allele frequency of p ¼ 0.3.
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Figure 4 Model comparison with maize quantitative traits. (a–c) Evaluation of the model type I error

rates using random SNPs for flowering time (a), ear height (b) and ear diameter (c). The cumulative
distributions of observed P values are presented for the simple model, the Q model, the K model, the

Q + K model and the simple model with genomic control (GC). Under the expectation that random

SNPs are unlinked to the polymorphisms controlling these traits (H0: no SNP effect), approaches that

appropriately control for type I errors should show a uniform distribution of P values (a diagonal line in

these cumulative plots). The simple model was included only for the purpose of illustrating the effect

of ignoring population structure and family relationships, as it is not a standard practice. (d–f) The

adjusted average power of the models for flowering time (d), ear height (e) and ear diameter (f). A

genetic effect was added to each random SNP (QTN effect), where k ¼ 0.1, 0.2, 0.5, 0.7, 0.9 and

1.0 times the standard deviation of the phenotypic mean of a trait. Each model was adjusted based

on its empirical type I error rate. The adjusted average power for GC is the same as that of the simple

model with the empirical threshold P value. For convenience of comparison, we list the point value of

phenotypic variation explained by a QTN at the allele frequency of p ¼ 0.3.
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The genetic effect was assigned to all random SNPs, one at a time, and each

model was run to determine whether the effect could be detected with the

empirical threshold P value. The proportion of the detected QTN summed

across all SNPs, or adjusted average power, was used as a measurement of the

control on the type II error rate by each model.

Statistical tests. For the CEPH data with all 194 individuals from 14 families,

Merlin27 software was first used to estimate identity by descent with all SNPs on

each chromosome, and this information was then used in QTDT7 software to

implement association tests for the 1,384 SNPs. STRUCTURE9 did not detect

any population structure other than known family structure, which agreed with

results from previous study28. Heritability for each gene expression was

calculated with Merlin.

For the maize data, STRUCTURE with 89 microsatellites showed that the

likelihood for model parameter k ¼ 3 was much higher than k ¼ 2 and

comparable with k ¼ 4 or higher15. Combining this with knowledge of the

breeding history of these inbred lines, we chose k ¼ 3 and defined a mixed

group to include lines with all three genome percentages under 0.8. The relative

kinship (K) matrix was calculated on the basis of 553 SNPs using the software

package SPAGeDi29. Negative values between individuals were set to 0, as this

indicates that they are less related than random individuals29. Essentially, the

degree of genetic covariance caused by polygenic effects was defined to be 0 for

a pair of individuals that are not related but positive for a pair of individuals

that are related. This threshold is similar to the pedigree-based coancestry

matrix in which individuals with unknown relationship are set to 0. We

replaced the pedigree-based coancestry matrix of the traditional mixed model

with this K matrix to define the degree of genetic covariance between pairs of

individuals. Model comparison of K matrix with other marker-based genetic

similarity matrices, simple matching coefficients, Jaccard similarity coefficients

and Dice coefficients indicated a better fit of the K matrix on the basis of

Bayesian Information Criterion (BIC) values. We also experimented with

different thresholds; these tests suggested that a threshold is needed, although

the current approach may not always be the optimal solution for every

population. We also implemented STRUCTURE analyses with SNP data and

SPAGeDi with microsatellite data and obtained similar Q and K. All models

with Q and K calculated based on either SNPs or microsatellites were tested for

model fit, and the results consistently showed a better fit for the Q + K model

over either Q or K alone. For consistency with previously published work15, our

results for Q were calculated on the basis of microsatellites and for K on the

basis of SNPs.

We programmed a macro in SAS30 to iteratively analyze the data with Proc

Mixed. To compare the goodness of fit of the different models, we used

maximum likelihood methods to obtain the –2 residual log likelihood and BIC,

which accounts for the number of parameters in the model, because both fixed

and random effects were involved in the model comparison. The test of SNP/

QTN effect was carried out by F test, with denominator degrees of freedom per

the Satterthwaite method, after the convergence of REML. Because LD decays

rapidly with these samples, few, if any, of the random SNP should associate

with the traits. Consequently, these random SNPs provided an empirical null

distribution to compare these methods on the control of type I error. With this

empirical distribution, an inflation factor (l) was estimated, and genomic

control for the simple model was conducted by dividing the F test statistic by

this inflation factor10.

The mixed model equation for our Q + K method is expressed as

y ¼ Xb+ Sa+Qv +Zu+ e ð2Þ

Equation (2) is an expanded version of a traditional mixed model in which all

fixed effects are modeled in the Xb term16. In our expanded form, Xb simply

represents those fixed effects other than the SNP under testing and the

population structure; y is a vector of phenotypic observation; b is a vector of

fixed effects other than SNP or population group effects; a is a vector of SNP

effects (QTN); v is a vector of population effects; u is a vector of polygene

background effects; e is a vector of residual effects; Q is a matrix from

STRUCTURE relating y to v; and X, S and Z are incidence matrices of 1s

and 0s relating y to b, a and u, respectively. The variances of the random effects

are assumed to be Var(u) ¼ 2KVg, and Var(e) ¼ RVR, where K is an n � n

matrix of relative kinship coefficients that define the degree of genetic

covariance between a pair of individuals; R is an n � n matrix in which the

off-diagonal elements are 0 and the diagonal elements are the reciprocal of the

number of observations for which each phenotypic data point was obtained; Vg

is the genetic variance; and VR is the residual variance. Best linear unbiased

estimates (BLUE) of b, a and v (fixed effects) and best linear unbiased

predictions (BLUP) of u (random effects) were obtained by solving the

mixed-model equations16,17. We are implementing the new method in our

publicly available software TASSEL.

URLs. SNP Consortium Linkage Map Project database, http://snp.cshl.org/

linkage_maps/; TASSEL software, http://www.maizegenetics.net.

Note: Supplementary information is available on the Nature Genetics website.
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