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Summary

Crop improvement and the dissection of complex genetic traits require germplasm diversity. Although this

necessary phenotypic variability exists in diverse maize, most research is conducted using a small subset of

inbred lines. An association population of 302 lines is now available – a valuable research tool that captures a

large proportion of the alleles in cultivated maize. Provided that appropriate statistical models correcting for

population structure are included, this tool can be used in association analyses to provide high-resolution

evaluation of multiple alleles. This study describes the population structure of the 302 lines, and investigates

the relationship between population structure and various measures of phenotypic and breeding value. On

average, our estimates of population structure account for 9.3% of phenotypic variation, roughly equivalent to

a major quantitative trait locus (QTL), with a high of 35%. Inclusion of population structure in association

models is critical to meaningful analyses. This new association population has the potential to identify QTL

with small effects, which will aid in dissecting complex traits and in planning future projects to exploit the rich

diversity present in maize.

Keywords: association mapping, quantitative trait loci, diverse maize germplasm, linkage-disequilibrium

mapping.

Introduction

Conventional methods for mapping quantitative trait loci

(QTL) in plants include first generating a population (F2,

backcross, recombinant inbred, etc.) from a biparental cross,

genotyping the individuals with genetic markers across the

genome, phenotyping the individuals for the trait of interest,

and then analyzing the results via linkage mapping. While

linkage mapping has certainly proven useful in identifying a

number of important qualitative and quantitative traits in

many plant species, it is severely limited by the resolution of

the mapping population. Due to small population sizes and

the modest degree of recombination within the population,

resolution is often in the range of 10–30 cM. Efforts to in-

creasemapping resolution inmaize (Zeamays ssp.mays) by

random mating for several generations prior to inbreeding

have improved resolution to a few cM [e.g. the intermated

B73 · Mo17 population (IBM), Lee et al., 2002], but this still

corresponds to millions of bases and hundreds of genes.

Linkage mapping is also limited to sampling only two alleles

at a locus in any given biparental population.

Association mapping, based on linkage disequilibrium

(LD), offers an alternative method for mapping QTL. Origin-

ally developed for use in mapping human disease genes

1054 ª 2005 Blackwell Publishing Ltd
No claim to original US government works

The Plant Journal (2005) 44, 1054–1064 doi: 10.1111/j.1365-313X.2005.02591.x



(Corder et al., 1994; Kerem et al., 1989), associationmapping

utilizes ancestral recombination events in natural popula-

tions to make marker–phenotype associations (reviewed by

Buckler and Thornsberry, 2002; Rafalski, 2002). Association

methods evaluate whether certain alleles within a popula-

tion are found with specific phenotypes more frequently

than expected.

Associationmapping has several advantages over linkage

mapping in traditional biparental populations: (i) currently

existing populations are used versus generating a popula-

tion via a biparental cross (especially relevant for long-lived

species); (ii) a potentially large number of alleles per locus –

as opposed to only two – can be surveyed simultaneously;

and (iii) resolution can be dramatically increased (e.g.

2000 bp in diverse maize inbred lines; Remington et al.,

2001). Given enough statistical power, this latter improve-

ment may allow for the identification of the causative

polymorphism within a candidate gene. Current applica-

tions of association analysis include genome scans and

candidate-gene testing. In a genome scan, single-nucleotide

polymorphism (SNP) markers are placed across the genome

at an appropriate density, while candidate-gene testing

involves sequencing only the candidate gene. Success of

either method depends on population size and the degree of

LD in the population, genome scans being most useful in

species with moderate to extensive LD (species with low LD

require excessive numbers of markers to cover the genome);

and candidate-gene testing being most effective for species

with low LD (the LD may extend well beyond the candidate

gene in species with high LD).

Association analysis has been employed only recently in

plants, with initial resistance due in large part to the

confounding effects of population structure and the general

lack of knowledge regarding the structure of LD in many

plant species (reviewed by Flint-Garcia et al., 2003). The

complex breeding history of many important crops and

limited gene flow in most wild plants have created complex

stratification within the germplasm (Sharbel et al., 2000).

This population stratification and an unequal distribution of

alleles within a population can result in non-functional,

spurious associations (Knowler et al., 1988). However, the

effects of population structure can be corrected for by using

a large number of independent genetic markers across the

genome (Pritchard and Rosenberg, 1999; Pritchard et al.,

2000b; Reich and Goldstein, 2001). As a result, many

important plant association studies have been published to

date, including flowering time in maize (Thornsberry et al.,

2001); growth habit and bolting in sea beet (Beta vulgaris

ssp. maritima) (Hansen et al., 2001); trichome density and

initiation in Arabidopsis (Hauser et al., 2001); kernel compo-

sition in maize (Wilson et al., 2004); and carotenoid content

in maize (Palaisa et al., 2003).

Here we describe the latest association mapping resource

available to the maize community, including accurate

estimates of relatedness and population structure based on

89 simple-sequence repeat (SSR) loci. Our population of 302

maize inbred lines represents the diversity present in public-

sector breeding programs around the world, and captures a

large proportion of the maize germplasm pool (Liu et al.,

2003). We also discuss relationships between trait heritabil-

ity, population structure, and power in association analysis.

This association population will provide the maize commu-

nity with a high-resolution platform for QTL dissection.

Results and discussion

Maize has extensive phenotypic andmolecular diversity that

can be exploited in breeding programs for crop improve-

ment. To use this diversity effectively requires a thorough

understanding of the phenotypic and molecular variation of

these genetic resources. In addition, before initiating genetic

analysis of a quantitative trait, information about the trait

such as its heritability and its relationship with population

structure must be known. Here we discuss these aspects of

phenotypic and molecular diversity in the context of a new

maize association mapping population.

Association analysis: the basic components

Detailed methods for association mapping are given by

Whitt and Buckler (2003), and additional information can be

found at http://www.maizegenetics.net. Here we provide

only a brief introduction to the five basic steps required for

association studies: germplasm choice; estimation of pop-

ulation structure; trait evaluation; identification of candidate

polymorphisms; and statistical analysis (Figure 1).

Choice of germplasm is critical to the success of associ-

ation analysis. The germplasm set should encompass as

much phenotypic variation as possible, and perhaps repre-

sent the breeding pool of a crop species. Genetic or

phenotypic surveys can be used to identify genotypically

diverse subsets of the available germplasm in order to

maximize the range of alleles sampled in the population. In

some species, core sets of germplasm have already been

defined and characterized, and can be used to initiate

preliminary association studies. The degree of LD present

in the population will determine the resolution of the

analysis. The structure of LD is highly population-specific

(Rafalski, 2002; Tenaillon et al., 2001), and can be locus-

specific due to differences in recombination and mutation

rates as well as the evolutionary history of the locus

(Remington et al., 2001).

The presence of population structure can lead to spurious

results, and must be accounted for in the statistical analysis.

The underlying population stratification can be quantified by

acquiring genotypic data for a large number of independent

markers (50–150) for each member of the germplasm set. A

more thorough discussion regarding the analysis of
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population structure and generation of the ‘Qmatrix’ follows

below.

Once an adequate germplasm set has been defined and

the population structure has been estimated, as is the case

for this new association population, an almost endless

number of experiments may be conducted regarding speci-

fic traits and candidate genes. Choice of target trait(s) should

reflect the ability to measure the trait accurately (heritabil-

ity). For example, many quantitative agronomic traits, such

as plant-damage ratings for insect resistance, have low

heritability, requiring extensive replication to obtain mean-

ingful trait data. In those cases, and where data collection is

extremely intensive, use of a highly correlated trait may be

preferable. Trait measurements should balance simplicity in

data collection, biological relevance and reproducibility.

Typically, trait data should come from randomized plots

with 10–15 plants per row, replicated within and across

multiple environments, especially if estimates of geno-

type · environment effects are desired.

Choice of candidate genes often requires a multi-disci-

plinary approach. Studies involvingmutagenesis, biochemi-

cal, expression-profiling and comparative genomics can be

used to create a list of ‘positional candidates’, or candidate

genes that fall within previously defined QTL intervals. A

preliminary sequence for each candidate gene is needed to

design overlapping primer pairs to amplify both upstream

and coding regions of the gene. Primer design can be

challenging in diverse germplasm, as priming in more

conserved regions may amplify paralogous regions of the

genome, while priming in less conserved regions may fail if

there is extensive polymorphism in the primer region across

the germplasm. Nucleotide sequence is determined by

capillary electrophoresis, sequence quality is assessed,

and sequences are contiged/joined. Alignments of contigs

across the germplasm are created, and polymorphisms

(indels and SNPs) are identified.

Trait data, candidate polymorphisms and population

structure data are then analyzed by association analysis

(Figure 1). The type III sums of squares are tested using the

generalized linear model (GLM):

T ¼ C þQ þ e

where T is the trait data, C is the genotype of the candidate

polymorphism, Q is the population structure Q matrix, and

e is error. Permutation analysis, a less conservative method

than the Bonferroni correction, is then used to determine

significance thresholds. Significant results should be

checked for phenotypic and genotypic outliers that may be

driving the associations. Linkage disequilibrium should be

examined to determine which polymorphisms form hapl-

otypes within the candidate gene, and to define the reso-

lution of the association analysis. The most

straightforward way to verify a putative association is to

evaluate the candidate polymorphism in an entirely dif-

ferent population sample with an independent population

structure. Other verification methods include biochemical

studies when the polymorphism causes a change in pro-

moter activity or coding sequence, and analysis of nearly

isogenic lines.

The association population

The newest association resource available to the maize

community is a collection of 302 inbred lines representing

the diversity present in public-sector maize-breeding pro-

grams worldwide (Table S1). This germplasm set is com-

prised of current breeding lines as well as historically

important lines from both temperate and tropical programs,

including eight popcorns and seven sweetcorn lines with

genetically distinct breeding histories. A subset of this

population (102 lines) has been used in previous association

analyses (Remington et al., 2001; Thornsberry et al., 2001;

Wilson et al., 2004), and the population structure for 238 of

the 302 lines was analyzed in an earlier study by (Liu et al.,

2003).

Phenotypic diversity

Here we present well replicated phenotypic data on 101

inbred lines from the original population of 102 inbred lines

(Q6199 was omitted from phenotypic analysis due to lack of

data and difficulty in maintaining seed stocks). During the

period 1998–2002, data were collected for 60 plant, ear and

kernel traits from both winter and summer seasons in up to

Choose germplasm

Choose
candidate gene

PCR amplify
& sequence  

Contig and align
sequences 

Choose
target 

trait

Obtain independent
genome-wide
marker data

Estimate
population

structure (Q)

Evaluate trait
in replicated
trials (T)   

Identify
polymorphisms

(C)

Association analysis
T = C + Q + E 

Figure 1. Flow chart illustrating the steps involved in association mapping.

Steps discussed in detail are displayed in gray boxes.
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10 environments. Rather than discussing these traits per se,

these data are provided in order to demonstrate the value of

this population as a genomic tool.

As indicated in Table 1, there was substantial variation for

nearly all of the 60 traits we measured in this diverse

germplasm set. Flowering dates (days to pollen shed and

silk) represented the most striking example of phenotypic

variation, ranging from 50 to 90 days after planting. To date,

most genetic analyses in maize have utilized only a handful

of inbred lines, such as B73 and Mo17. When these two

inbreds are used as inbred lines per se, they capture an

average of only 20% of the phenotypic range seen in this

diverse group of inbred lines (Table 1). Many QTL studies

report transgressive segregation when examining popula-

tions derived from biparental crosses such as the IBM

population. Based on the narrow range of B73 and Mo17

compared with the 101 inbreds examined here, we would

expect to see even greater transgressive segregation in

populations derived from more diverse germplasm. Our

findings in the inbreds emphasize the importance of exam-

ining a broad germplasm set in order to identify inbreds that

differ for the trait of interest.

Heritability

Broad-sense heritability (H2) ‘expresses the extent to which

individuals’ phenotypes are determined by the genotypes’

(Falconer and Mackay, 1996), and corresponds computa-

tionally to the proportion of total phenotypic variance due to

genetics. Narrow-sense heritability (h2) is the proportion of

the phenotypic variance that can be attributed specifically to

additive genetic variance. Additionally, there are two ways

to report heritability: mean-basis heritability, and plot-basis

heritability. While their calculation varies only slightly, the

interpretation of each is quite different (Holland et al., 2003).

Numerous factors affect the ability to detect QTL, inclu-

ding population size, number of QTL and size of their effects,

and error present in the phenotypic measurements (Beavis,

1994; Lande and Thompson, 1990). One way to interpret H2

is that it indicates how much replication and what type of

experimental design are required to minimize this experi-

mental error. Thus heritability indicates the precision of

genotypic mean estimates that are to be used in QTL

analysis. A low heritability value can indicate several things:

that a large number of genes govern the trait (biological

complexity); that a significant proportion of the trait vari-

ation is due to the environment or experimental error; and/or

that relative differences among genotypic values depend on

the environment (genotype · environment interaction). In

any case, insufficient replication may result in lower mean-

basis heritability, reflecting inaccurate estimates of genetic

effects in QTL experiments. Amore practical interpretation is

that mean-basis H2 is the upper limit of the proportion of

phenotypic variation (R2) in the data set that can be

explained in genetic studies.

For most of traits in this study there were either single-

replication environments, or only one multiple-replication

environment. Therefore we chose to simplify our data set by

combining multiple replicates from an environment into a

single mean in order to calculate heritability, causing the

genotype · environment effect to be confounded with the

error term. We were able to test genotype · environment

effects for days to tassel and silk; plant and ear height; and

kernel protein, starch, oil, and moisture, as these were the

only traits with data from multiple replicates in multiple

environments. The genotype · environment interaction was

statistically significant (P < 0.01) for all but kernel starch and

kernel moisture (Table 1). A consequence of significant

genotype · environment effects is that different associa-

tions may be detected across environments, as is the case

with most genetic analyses.

We calculated broad-sense heritability on a family mean

basis (H2
m) for 60 traits by partitioning the variance from

replicated evaluations of 101 inbred lines for data combined

across all environments (Table 1). H2
m for most traits in this

study was high, despite the fact that data were combined

across winter and summer environments. As expected, days

to pollen and silk, plant and ear height, and total number of

nodes are highly heritable traits, all with H2
m estimated as

‡0.95. Heritability for number of ears, however, was lower

(H2
m ¼ 0.64), a result we also anticipated as data for this trait

were collected relatively early after flowering based on the

number of shoots with silks present, rather than on the

number of ears with seed at harvest. Interestingly, other

traits with lower heritability values (H2
m £ 0.60) included

pubescence indices for the leaf blade, leaf sheath and leaf

sheath margin. These lower values may be attributed to the

subjective scale used during data collection. It is possible

that H2
m was low for these traits because of the biological

complexity mentioned above; however, in the case of

number of ears, we acknowledge that our approach to

scoring this trait was unsatisfactory. Heritability for percent-

age vivipary was estimated to be zero because the genetic

component of the phenotypic variance was insignificant

relative to the genotype · environment component (error)

for those environments in which we scored percentage

vivipary.

The values for narrow-sense heritability on a plot basis

(h2
p) were generally lower than the H2

m values, reflecting the

effort required to obtain reliable trait measurements, as well

as the varying complexity levels of the traits. Our estimates

of h2
p for 12 traits (days to pollen, days to silk, plant height,

ear height, number of ears, number of kernel rows, ear

diameter, cob diameter, ear length, 10-kernel length, 10-

kernel mass, kernel oil) are in general agreement with the

results of the large number of studies summarized by
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Table 1 Descriptive statistics, family mean-basis heritability and percentage of phenotypic variation explained by population structure for 60
traits scored at up to 10 environments

Minimum Average Maximum

Percentage of
range captured
by B73 and Mo17

Significance
of G · E H2a

m h2b
p R2c

Plant traits

Days to pollen (days) 50.2 70.1 90.8 17.9 ** 0.965 0.877 35.0
Days to silk (days) 51.6 70.7 90.2 14.9 ** 0.956 0.847 32.9
Plant height (cm) 86 154 211 8.8 ** 0.949 0.739 8.7
Ear height (cm) 20 57 100 15.7 ** 0.952 0.800 16.4
Upper leaf angle (�) 6.0 54.4 80.6 32.2 ND 0.881 0.726 20.1
Lower leaf angle (�) 31.9 55.6 76.2 16.7 ND 0.860 0.533 6.7
Leaf length (mm) 44.6 74.6 104.2 30.2 ND 0.936 0.920 17.6
Leaf width (cm) 4.4 8.5 11.6 2.6 ND 0.891 0.710 4.6
Nodes with brace roots 0.1 1.7 4.3 27.7 ND 0.773 0.593 12.2
Number of earsd 1.2 2.0 3.2 6.4 ND 0.639 0.195 5.0
Nodes from ear to tassel 2.9 5.4 8.4 20.2 ND 0.930 0.859 14.5
Nodes below ear 2.8 5.9 9.8 27.1 ND 0.913 0.817 22.1
Total number of nodes 7.1 13.3 18.8 24.7 ND 0.948 0.911 24.5
Stalk thickness (mm) 15.4 21.6 27.5 25.2 ND 0.811 0.541 1.1
Stalk width (mm) 15.7 21.8 28.2 25.1 ND 0.786 0.532 1.7
Tassel length (mm) 188.3 321.0 474.9 22.8 ND 0.900 0.763 17.5
Main spike length (mm) 119.0 220.5 370.4 35.4 ND 0.912 0.710 3.7
Tassel branch count 0.6 10.3 20.1 9.2 ND 0.922 0.806 21.0
Tassel angled (�) 2.5 61.1 83.0 21.2 ND 0.894 0.741 4.9
Tassel mass (g) 1.3 4.5 11.6 0.5 ND 0.961 0.956 14.8
Stalk anthocyanin 0.0 1.2 7.0 29.1 ND 0.641 0.529 5.6
Brace-root anthocyanin 0.0 3.7 10.0 80.4 ND 0.709 0.554 10.2
Leaf-midrib anthocyanin 0.0 0.1 10.0 0.0 ND ND ND 0.6
Leaf-margin anthocyanin 0.0 1.4 10.0 0.0 ND 0.765 0.438 6.7
Anther anthocyanin 0.0 1.4 8.0 18.8 ND ND ND 3.2
Glume anthocyanin 0.0 1.9 8.5 5.9 ND 0.805 0.572 4.6
Glume-bar anthocyanin 0.0 1.2 10.0 0.0 ND 0.931 0.816 2.0
Leaf-blade pubescence 0.0 2.0 4.5 0.0 ND 0.604 0.591 15.5
Leaf-sheath pubescence 0.0 1.6 3.7 33.7 ND 0.269 0.327 13.9
Leaf sheath-margin pubescence 0.0 2.0 5.0 9.9 ND 0.429 0.142 3.3
Ear traits

Number of kernel rows 10.2 13.1 17.2 97.8 ND 0.905 0.746 12.8
Ear diameter (mm) 26.4 36.4 56.0 33.4 ND 0.784 0.216 0.8
Cob diameter (mm) 18.4 23.8 31.1 77.5 ND 0.824 0.369 3.6
Ear mass (g) 20.2 55.3 103.4 8.6 ND 0.853 0.309 1.9
Cob mass (g) 4.1 13.7 30.3 39.2 ND 0.902 0.506 1.5
Total kernel mass (g) 12.1 41.5 80.9 4.6 ND 0.837 0.297 3.7
Ear length (mm) 67.4 119.6 159.6 17.0 ND 0.872 0.449 0.1
Seed-set length (mm) 33.0 102.2 167.0 15.7 ND 0.773 0.569 1.9
Total kernel volume (mL) 18.3 58.0 104.5 2.9 ND 0.833 0.286 5.1
Kernel densitye (g L)1) 0.47 0.70 0.93 43.7 ND 0.451 0.127 0.2
Percentage vivipary (%) 0.0 0.5 24.8 0.8 ND 0.000 ND 1.5
Kernel traits

10-lernel lengthd (mm) 62.5 85.0 102.8 7.5 ND 0.800 0.242 7.1
10-kernel thickness (mm) 24.8 46.5 60.1 11.7 ND 0.666 0.290 3.0
10-kernel widthd (mm) 54.0 78.0 98.3 29.0 ND 0.840 0.308 0.9
10-kernel massd (g) 1.06 2.30 3.56 14.9 ND 0.834 0.417 1.4
Kernel moisturee (%) 2.3 8.1 9.9 1.7 ns 0.167 ND 0.2
Kernel oile (%) 2.7 6.5 15.4 2.3 ** 0.811 0.596 7.9
Kernel proteine (%) 7.6 12.2 17.1 0.6 ** 0.776 0.469 3.8
Kernel starche (%) 21.7 49.4 76.7 2.0 ns 0.785 0.556 18.9
Kernel amylosee (%) 18.4 20.8 26.8 16.8 ND 0.738 0.469 6.4
Starch breakdowne (PaÆsec) 0.01 0.12 0.24 4.3 ND 0.610 0.327 8.1
Starch consistencye (PaÆsec) 0.08 0.24 0.33 20.0 ND 0.634 0.297 14.6
Starch cool-paste viscositye (PaÆsec) 0.16 0.53 0.73 24.6 ND 0.724 0.348 17.6
Starch hot-paste viscositye (PaÆsec) 0.08 0.29 0.41 27.6 ND 0.727 0.425 19.8
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Hallauer and Miranda Filho (1988), in which various segre-

gating progeny were used to estimate h2
p.

Population structure

The prerequisite for all subsequent analyses in this study

was the characterization of population structure within our

new set of inbred lines using the software package STRUC-

TURE 2.1 (Pritchard et al., 2000a). We ran STRUCTURE for K

(number of fixed subpopulations or clusters) ranging from 1

to 7 on (i) the entire data set (301 lines) and (ii) a subset of

lines that excluded seven sweetcorn and eight popcorn lines

(286 lines). Based on prior analyses using a smaller number

of lines, we found consistently that models including

sweetcorn and popcorn lines had lower likelihoods than

models excluding these lines (Liu et al., 2003). The sweet-

corn and popcorn lines are so very distinct from all other

lines because of the intense genetic isolation that occurred

during their development as specialty maize. Despite this

fact, these lines fail to create their own subpopulation(s) due

to the small number of sweetcorn and popcorn lines in our

germplasm collection. However, whether or not these lines

were included, the model with K ¼ 3 clusters showed a

higher likelihood than K ¼ 2, and likelihoods comparable

with models K ¼ 4–7. The three clusters are referred to

hereafter as non-stiff-stalk (NSS), stiff-stalk (SS) and tropical

and subtropical (TS) subpopulations, a naming utility based

on how the majority of lines in a given cluster are regarded

by maize breeders. The K ¼ 3 model excluding sweetcorns

and popcorns presented the highest likelihood, and was

used to assign lines to the appropriate subpopulations: 113

NSS, 36 SS and 73 TS lines (Table S1). In addition, 64 lines

were assigned to a fourth ‘mixed’ group. Results of this

study were consistent with those presented by Liu et al.

(2003). When sweetcorn and popcorn lines were included in

our analyses, they clustered with the NSS lines rather than

forming their own subpopulation(s).

Wright’s Fst values (Wright, 1951) were used to summar-

ize differentiation between subpopulations relative to varia-

tion within subpopulations (Table 2). While analogous Rst

estimates based on the variance in microsatellite allele size

can also be used for microsatellites (Slatkin, 1995), these are

not appropriate when indels occur as is the case for some of

the microsatellites used in this study (data not shown).

Although the size homoplasy that exists at microsatellite loci

may bias Fst estimates and detection of population struc-

ture, this is not usually considered to represent a significant

problem, as the large amount of variability at microsatellite

loci often compensates for the existence of homoplasy

(Estoup et al., 2002). Moreover, in our data set a potential

effect of size homoplasy on population structure estimates is

expected to be diluted by the large number of loci, because

the probability of identity by state at a large number of loci

for a given line is expected to be low.

A total of 250 lines were classified asmembers of the NSS,

TS or mixed groups, with a maximal pairwise Fst of 0.06

(P < 0.001) among these three groups. This value indicates

that, while consistent and significant population structure

exists, it explains only a modest proportion of the marker

variation in this diverse germplasm. By comparison, the

sweetcorn, popcorn and SS subpopulations were more

differentiated. The overall Fst value for comparing the three

subpopulations (SS, NSS, TS) with the sweetcorn and

popcorn subpopulations was 0.097 (P < 0.001; data not

shown). Fst values between all groups were also significant

(P < 0.001), supporting the existence of genetic structure.

The inclusion, and subsequent clustering, of sweetcorn and

popcorn lines with the NSS group did not change Fst values

between this subpopulation and the others, as respective

values remained the same when these lines were excluded

Table 1 Continued

Minimum Average Maximum

Percentage of
range captured
by B73 and Mo17

Significance
of G · E H2a

m h2b
p R2c

Starch-pasting temperaturee (�C) 63.81 66.82 69.66 33.4 ND 0.666 0.451 4.5
Starch peak temperaturee (�C) 76.67 83.30 94.03 12.1 ND 0.656 0.315 4.8
Starch peak timee (sec) 183.87 222.16 287.26 11.5 ND 0.679 0.318 4.8
Starch peak viscositye (Pa sec) 0.08 0.41 0.63 18.5 ND 0.752 0.369 15.7
Starch setbacke (Pa sec) 0.08 0.24 0.34 19.9 ND 0.642 0.297 13.3
Starch trough viscositye (Pa sec) 0.08 0.29 0.40 26.6 ND 0.716 0.423 20.8

aBroad-sense heritability on family mean basis.
bNarrow-sense heritability on a plot mean basis.
cPercentage of phenotypic variation explained by population structure.
dPopcorn-related trait.
eStarch-related trait.
ND, not determined. These traits were not scored in enough environments to calculate heritability and/or to test genotype · environment effects.
**P < 0.01; ns, not significant at P ¼ 0.05.
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(data not shown). The mixed group fell substantially closer

to the TS and NSS subpopulations than it did to the SS

subpopulation, which was in agreement with pedigree

information (Table S1).

In the past, maize breeders have relied on qualitative

pedigree information (Table S1) to estimate the genetic

contribution of inbred lines and the relationships between

them. Our population structure estimates based on SSR

marker data allow us to quantify these relationships in the

form of the Q matrix. This will allow breeders to make more

informed decisions about potential crosses between these

inbred lines.

A phylogenetic tree was constructed using the same

genotypic data cited above. This tree was in good agreement

with the STRUCTURE analysis, further supporting the pro-

posed genetic structure to describe the set of inbred lines.

The detection of historically meaningful phylogenetic rela-

tionships between lines (according to pedigree-based

groups: SS, NSS, TS, popcorn and sweetcorn lines) also

supports the fact that potential size homoplasy at microsat-

ellites is not problematic in our data set. Consequently, the

population structure detected is likely to have some evolu-

tionarymeaning, and is not significantly affected by possible

homoplasy among alleles. The phylogenetic tree is presen-

ted in Figure S1.

Armed with these population-structure data, a proper

association analysis can now be performed on the new set of

302 inbred lines. Several methods using independent mar-

ker data have been devised recently to correct for population

structure (Pritchard et al., 2000a,b; Reich and Goldstein,

2001). Pritchard’s method (Pritchard et al., 2000a,b), which

incorporates estimates of population structure directly into

the association test statistic, has been integrated into the

association analysis software TASSEL (see http://www.maize-

genetics.net for more information). These population-struc-

ture data can also be utilized in approaches that rely on

alternative methods for dealing with relatedness (Crepieux

et al., 2004).

Effect of population structure on phenotype

A particular strength of this study was that estimates of

population structure based on 89 SSR loci allowed us to

investigate the relationship between population structure

and various aspects of phenotype, such as heritability. As

noted above, an understanding of the effect of population

structure on the trait of interest is critical for association

studies in order to prevent spurious associations. However,

if population structure is found to explain too much of the

variation, then structured association analyses will have lit-

tle power to detect the effects of individual genes.

For each trait, we looked for any important statistical

outliers related to population structure and breeding history.

As sweetcorn lines are mutant outliers for kernel composi-

tion traits, they were excluded from the kernel composition

population structure analyses. Likewise, popcorn lines were

identified as outliers on kernel morphology traits, as well as

tassel angle and number of ears, and thus were also

excluded from phenotypic correlations.

Overall, population structure accounts for an average of

9.3% of the phenotypic variation across all traits in this

study, even after appropriate lines were excluded from the

analysis for specific traits (Table 1). Population structure is

rarely the dominant factor in phenotypic variation, but its

effect can be seen in nearly all traits. As a 9.3% effect is

roughly equivalent to a substantial QTL detected in interval

mapping, or a major QTL in association analysis, it is

imperative that the effect of population structure be exam-

ined when doing association studies for any given trait. By

controlling for population structure, Thornsberry et al.

(2001) decreased the number of false-positive associations

by almost fivefold for some traits in an association study of

flowering time in maize. Wilson et al. (2004) found that a

previously reported association between shrunken2 and

overall starch in the original set of 102 inbred lines was no

longer evident when population structure was included in

the analysis. They concluded that either the previously

reported QTL was perhaps the result of the genotype · envi-

ronment-sensitive nature of shrunken2, or that the original

association may have been caused exclusively by popula-

tion structure.

Structured association analysis of traits highly correlated

with population structure will result in many false negatives

(lack of power). For example, as flowering time is highly

correlated with population structure (R2 ¼ 33–35%), func-

tional alleles whose distribution coincide with population

Table 2 Fst values for comparison of subpopulations determined by STRUCTURE analysis

Fst* Mixed Non-stiff stalk Popcorn Stiff stalk Sweetcorn Tropical/subtropical

Mixed 0.01 0.15 0.15 0.08 0.03
Non-stiff stalk 0.15 0.18 0.10 0.06
Popcorn 0.39 0.28 0.16
Stiff stalk 0.33 0.22
Sweetcorn 0.12
Tropical/subtropical

*All Fst values are significant (P < 0.001).
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structure will not be detected when association models

include population structure estimates. This problem can be

seen as the trait and polymorphism(s) associate very

strongly when population structure is ignored, but the

association disappears when structure is considered. In

these cases, alternate association populations or linkage

populations would be more useful for evaluating the candi-

date polymorphisms. In this study of a new association

population, days to tassel and days to silk appear to be the

only traits where this phenomenon will be common.

Heritability and population structure

Our results suggest an interesting relationship between

heritability and population structure effect (r ¼ 0.37).

Although there was considerable scatter around the

regression line, two notable outliers were apparent: days to

pollen and days to silk have a higher population structure

effect than other traits of similar heritability. This result is

reasonable, as flowering time has probably undergone

selection to form the underlying population structure of this

new association population. While this population is an

excellent genetic resource for basic association analyses,

alternative populations may need to be designed to address

specific traits where there is a very strong relationship with

population structure.

Population size and power to detect associations

Simulation studies have demonstrated that sufficient power

exists to detect SNP–phenotype associations for QTL that

account for as little as 5% of the phenotypic variation when

approximately 500 individuals are genotyped for approxi-

mately 20 SNPs within the candidate gene region (Long and

Langley, 1999). This model-based study found that more

power is achieved by increasing the number of individuals in

the population than by increasing the SNP density within the

candidate gene.

Increasing population size lessens the impact of several

factors that limit the power to detect associations. Although

amajor advantage of association approaches is the ability to

evaluate multiple alleles simultaneously (compared with

only two alleles in standard linkage mapping), testing

multiple alleles can pose two problems. First, the more

alleles there are at any particular locus, the more allelic

classes must be tested, causing a multiple-test problem.

This problem can be addressed by using permutation

analysis to determine an experiment-wise significance

threshold (Churchill and Doerge, 1994). Second, as the

number of possible alleles per locus increases, the number

of individuals within each allelic class decreases, thereby

decreasing overall power. However, increasing the popula-

tion size necessarily increases the number of individuals

with rare alleles, thus improving the power to test these rare

alleles. A separate but related issue is the presence of

epistasis. When alleles at different loci interact, it is neces-

sary to include the interaction term in the model. However,

with multiple alleles at a particular locus, the number of

individuals in each interaction class may be very small.

Increasing population size also serves to increase the

number of individuals with certain allelic combinations,

thereby allowing for more powerful tests of epistasis. Genes

that are confirmed to play a role in the expression of a trait

can also be added to the model as cofactors in order to test

for epistatic effects (Szalma et al., 2005).

It is critical, however, that plant geneticists should not

completely abandon linkagemapping in favor of association

analysis. The relative success of association analysis com-

pared with linkage analysis is species-specific, as well as

population-specific. For example, in species with low gen-

etic diversity, linkage analysis is expected to be superior to

association analysis. In this case even the best germplasm

collection will not contain enough diversity to offset the loss

in statistical power in association analysis. Although associ-

ation analysis plays a key role in genetic analysis, it is still

only one of many valuable methods. An ideal analysis

combines linkage and association analysis, where the

strengths of each method are used to conduct high-power,

high-resolution tests (Jansen et al., 2003).

Overall, this new population of 302 maize inbred lines

harbors substantial phenotypic and genotypic diversity that

can be exploited efficiently for maize improvement through

association analysis. While population structure has a

persistent effect in this diverse maize population, the effect

is one of reasonable magnitude that can be controlled. To

exploit fully the benefits of association analysis as a genetic/

genomic tool in other plant species, a substantial effort is

needed to create association populations, analyze the LD

present within each population, and describe the population

structure for various plant species. However, once an

association population has been developed for a species,

as the current population has, a community effort is needed

to characterize the population phenotypically in order to

maximize its potential use in crop improvement.

Experimental procedures

The association population

A set of 302 maize inbred lines was assembled to represent the
diversity present in public-sector corn-breeding programs around
the world. Pedigrees of lines included can be found in a number of
sources, including published material by Gerdes et al. (1993) and in
the Germplasm Resources Information Network (GRIN) database,
but are summarized here in Table S1. Seed of most lines can be
obtained from their original source (see http://www.panzea.org).
Seed samples have also been provided to the North Central
Regional Plant Introduction Station (Ames, IA, USA), and are
available for distribution on request.
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Phenotypic data

The original set of 102 inbred lines (a subset of the population of
302) was grown in one-row plots in a completely randomized
block design at each of the following environments: 1998 Home-
stead, FL (one replicate); 1999 Clayton, NC (three replicates); 1999
Homestead, FL (one replicate); 2000 Clayton, NC (three replicates);
2000 West Lafayette, IN (one replicate); 2000 Homestead, FL (one
replicate); 2001 Clayton, NC (three replicates); 2001 Urbana, IL
(two replicates); 2002 Clayton, NC (one replicate); 2002 Home-
stead, FL (one replicate). Data for Q6199 were omitted from all
analyses due to extensive missing data and difficulty in main-
taining seed stocks. MaizeMeister, a personal digital assistant
(PDA) and bar code-based phenotyping system, was used to
facilitate phenotypic data collection from up to five plants per plot
during both field seasons in 2002. For more information about
MaizeMeister see http://www.maizegenetics.net.

Plant data collected in the field included: flowering time (days to
silk and tassel); ear and plant heights; leaf angles above and below
the ear zone; leaf length and width; number of nodes with brace
roots; number of ears; number of nodes above and below ears; total
number of nodes; stalk thickness and width; tassel and main spike
length; tassel branch count and angle; tassel weight; anthocyanin
indices (scale 0–10) for stalk, brace roots, leaf midrib, leaf margin,
anther, glume and glume bar; and pubescence indices (scale 0–5)
for leaf blade, sheath and sheath margin.

Ear and kernel data were collected from a single (uppermost)
hand-harvested, self-pollinated ear per plant. Ear data included:
number of kernel rows, ear diameter, cob diameter, ear mass,
cob mass, total kernel mass, ear length, seed-set length, kernel
volume, kernel density and percentage vivipary. Kernel data
included: 10-kernel length, 10-kernel thickness, 10-kernel width,
10-kernel mass, moisture, oil, protein, starch, amylose and starch-
pasting properties. The latter data set included values for starch
breakdown, consistency, cool-paste viscosity, host-paste visco-
sity, pasting temperature, peak temperature, peak time, peak
viscosity, setback and trough viscosity (methods for kernel
composition and starch-pasting properties described by Wilson
et al., 2004).

All phenotypic data (least-squares environment means) used in
our analyses are provided in Table S2. We are working towards
making these data available through the Gramene (http://
www.gramene.org) and Panzea (http://www.panzea.org) databases.

Molecular marker data

A subset of 238 inbred lines from the new association population
was genotyped at Celera AgGen (Davis, CA, USA) (methods previ-
ously described by Liu et al., 2003). The same set of SSR loci were
used to genotype the remaining 63 inbred lines (no SSR data were
available for NC316) and five teosinte plants at Cornell University,
except that SSRs bnlg1014, bnlg1189, bnlg1520, bnlg2238 and
phi116 were dropped. All SSR data are available at http://
www.panzea.org.

Statistical analyses of marker data

To investigate population structure among lines, we used the soft-
ware package STRUCTURE 2.1 (Pritchard et al., 2000a). This software
allows for the identification of different subpopulations within a
sample of individuals collected from a population of unknown
structure. Given a fixed number of subpopulations (K), this method
assigns individuals to clusters (each cluster corresponding to a

different subpopulation) with an associated probability. We ran
STRUCTURE for K ranging from 1 to 7 on the entire data set (301 lines),
and on a set of lines that excluded seven sweetcorn and eight
popcorn lines (286 lines). Five runs were completed for each K. In all
cases both the burn-in time and the replication number were set to
500 000. Lines with membership probabilities ‡0.8 were assigned to
subpopulations, while lines with membership probabilities <0.8
were assigned to amixed group. To assess further the existence of a
genetic structure between identified clusters, pairwise Fst values
were calculated using the software GENETIX (ver. 4.03; Belkhir et al.,
2001) and tested by permutation.

To construct a phylogenetic tree, we calculated the log-trans-
formed, proportion-of-shared-alleles distance between lines. This
distance is free of the stepwise assumption, enjoys low variance,
and is widely used with multi-locus SSR data (Liu et al., 2003;
Matsuoka et al., 2002). The Fitch–Margoliash least-squares algo-
rithm implemented in the computer program PHYLIP was then
applied to the distance matrix to obtain the phylogenetic tree
(Felsenstein, 1993). The tree was rooted using five samples of
teosinte (Zea mays ssp. parviglumis), a wild relative of maize, as the
outgroup (Matsuoka et al., 2002).

Statistical analyses of phenotypic data and related trait

analyses

Each environment was treated as a randomized complete block
design. Where there were multiple replicates per environment, the
lsmeans option of PROC GLM (SAS, SAS Institute, 1999–2001) was
used to compute environment means in order to simplify the data
set for heritability calculations. Harmonic means were calculated for
the number of replicates per line for each trait, and SAS PROCMIXED
was employed to partition the variance into genotype, environment,
and pooled error (genotype · environment with residual effect)
(Holland et al., 2003). These variance components were then used to
estimate broad-sense heritability on a mean basis. We tested
genotype · environment effects for days to tassel and silk, plant
and ear height, and kernel protein, starch, oil, andmoisture, as these
were the only traits with data from multiple replicates in multiple
environments. PROC GLM was used to partition the variance and
test for genotype · environment effects.

Narrow-sense heritability on a plot-mean basis was calculated
through a mixed model in which both marker-inferred population
structure (Qmatrix) and relatedness between inbred lines (Kmatrix)
were accounted for (G.P. and co-workers, unpublished data).
Essentially, with adjustment of the marker-inferred relationship
among these inbred lines, the phenotypic variance of a trait was
used to retrieve the additive genetic variance in a panmictic
population from which these inbred lines were derived (Falconer
and Mackay, 1996).

The effect of population structure was tested using SAS PROC
GLM. Themodel statement included two of the three components of
the K ¼ 3 Q matrix (NSS, SS) with sweetcorn and popcorn lines
excluded from the STRUCTURE analysis. For each trait, groups of
inbred lines constituting statistical outliers related to population
structure were identified and subsequently excluded from analyses
involving population structure. The relationship between heritability
and effect of population structure was tested using SAS PROC REG.
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